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We apply a level set formulation to the problem of surface
advancement in three-dimensional topography simulation of depo-
silion, etching, and lithography processoes in integrated circuit fab-
rication. The leve! sct formulation is based on solving a Hamilton-
Jacobi-type equation for a propagating level set function, using
techniques borrowed from hyperbolic conservation laws, Topologi-
cal changes, corner and cusp development, and accurate determina-
tion of geometric properties such as curvature and normal direction
are naturally obtained in this setting. The equations of motion of a
unified model, including the effects of isotropic and unidirectional
deposition and etching, visibility, surface diffusion, reflection, and
material dependent etch/deposition rates are presented and
adapted to a level set formulation. In Part | of this paper, the basic
equations and algarithms for two-dimensional simulations were
developed. In this paper, the extension to three dimensions is pre-
sented. We show a large collection of simulations, including three-
dimensional etching and deposition into cavities under the effects
of visibility, directional and source flux functions, evolution of litho-
graphic profiles, discontinuous etch rates through multiple materi-
als, and non-convex sputter yield flux functions. In Part 1 of this
paper, effects of reflection and re-emission and surface diffusion
will be presented. ® 1995 Academic Press, Inc.

1. INTRODUCTION

In this paper, we continue the development of a level
set formulation to simulated deposition, etching, and li-
thography in intcgrated cireuit fabrication. The goal is an
sceurate, stable, and clficient technique for surface ad-
vancement due 1o complex motion which, under different
physical effects, may include clfects of anisotropy, vistbility
conditions, and material-dependent propagation rates. In
Part [ of this paper, “A Level Set Approach to a Unified
Model for Efching, Deposition, and Photolithography I:
Two-Dimensional Simufations™ [2], the basic cquations
and algorithms for two-dimensional simulations are devel-
oped. In this paper, the exiension to three dimensions
is presented. We show a large collection of simulations,
incuding three-dimensional etching and deposition into
cavitics under the cffects of visibility, directional and
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source flux functions, evolution of lithographic profiles,
discontinuous ctch rates through multiple materials, and
non-convex spulter yield flux functions. The validity of
various physical models lor microlabrication will not be
cxamined. Instead, we hope to provide a robust numerical
approach 1o these phenomena which can then be used to
systematically examine various models.

A variety of numerical algorithms are available to ad-
vance fronts in etching, deposition and photolithography
processes. These methods are not unique to such simula-
tions and, in fact, are in use in such areas as dendritic
growth and solidification, flame/combustion models, and
fluid interfaces. Roughly speaking, they fall into three gen-
cral categories:

» Marker/string methods. In these methods, a discrete
parametrized version of the interface boundary is used.
In two dimensions, marker particles are used; in three
dimensions, a nodal triangularization of the interface is
often developed. The positions of the nodes are then up-
dated by determining front information about the normals
and curvature from the marker representation. Such repre-
sentations can be quite accurate, however, limitations exist
for complex motions. To begin, if corners and cusps de-
velop in the evolving front, markers usually form “swallow-
tail”” solutions which must be removed through delooping
technigques which attempt to enforee an entropy condition
inherent in such motion (sec [34]). Second, topological
changes are difficult to handle; when regions merge, some
markers must be removed. Third, significant instabilities
int the front can result, since the underlying marker particle
motions represent a weakly ill-posed initial value problem
(see [26]). Finally, extensions of such methods to three
dimensions require additional work.

» Cell-based methods. In these methods, the computa-
tional domain is divided into a set of cells which contain
“yolume fractions.” These volume fractions are numbers
between () and 1 and represent the fraction of each cell
containing the physical material. At any time, the front
can be reconstructed from these volume fractions. Advan-
tages of such techniques include the ability to easily handle
topological changes, design adaptive mesh methods, and
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THREE-DIMENSIONAL SIMULATIONS

build extensions to three dimensions. However, determina-
tion of geometric quantities such as normals and curvature
can be inaccurate.

» Characteristic Methods. In these methods, “‘ray-trace”-
like techniques are used. The characteristic equations for
the propagating interface are used, and the entropy condi-
tion at forming corners (see [34]) is formally enforced by
constructing the envelope of the evolving characteristics.
Such methods handle the looping problems more naturally,
but may be complex in three-dimensions and require the
adaptive addition and removal rays, which can cause insta-
bilities and/or oversmoothing.

Level set methods, introduced in [26], offer highly robust
and accurate methods for tracking interfaces moving under
complex mations. Their major virtue is that they naturally
construct the fundamental weak solution to surface propa-
gation posed by Sethian [33, 34). They work in any number
of space dimensions, naturally handle topological merging
and breaking naturally, and are easy to program. They
approximate the equation of motion for the underlying
propagating surface, which resembles Hamilton—Jacobi
equations with parabolic right-hand sides. The central
mathematical idea is to view the moving front as a particu-
lar level set of a higher dimensional function. In this setting,
sharp gradients and cusps can form easily, and the effects
of curvature may be easily incorporated. The key numeri-
cal idea is to borrow technology from the numerical solu-
tion of hyperbolic conservation laws and transfer these
ideas to the Hamilton-Jacobi setting, which then guaran-
tees that the correct entropy satisfying solution will be ob-
tained.

In Part I of this paper [2], the level set technique was
used to develop detailed two-dimensional calculations of
etching, deposition, and lithography problems. The re-
sulting numerical method accurately predicts two-dimen-
sional profile evolution, naturally taking into account such
effects as incident angles, masks, yield functions, visibility,
and anisotropy on the surface motion. Due to the use
of conservative upwind schemes, the method selects the
correct weak solution; where shocks in the tangent oceur,
the necessary entropy condition is invoked; at outward-
facing corners the correct rarefaction fan solution is built.
The method is second-order accurate in the motion of the
front and is of the same computational work as cell and
marker particle methods; that is, the work is a constant
times the number of points which characterize the evolv-
ing front.

We refer the interested reader to Part I of this paper
[2) for complete details of the method. In that work,
numerical convergence studies and validation tests of
the method were performed. Here, we concentrate on
the extension to three dimensions and on numerical
simulations, The extension of this method to three dimen-
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sions requires considerable care in several areas. First,
the calculation of visibility is more intricate and time-
consuming. Second, an efficient re-initialization of the
level set function requires a different algorithm. Third,
integration of the flux from the source warrants fast
integration technigues.

The outline of this paper is as follows. In Section 1, we
describe the basic level set algorithm applied to propa-
gating interfaces. In Section II, we give a upified set of
equations for the motion of an interface under deposition,
etching, and lithography. In Section III, we reformulate
these equations in a level set perspective. In Section IV,
we discuss some details of the numerical implementation.
In Section V, we demonstrate the power of the approach
through a series of model problems, and in Section VI we
apply the method to some particular problems of interest.
Part 111 of this paper will include the effects of reflection/
re-emission and surface diffusion.

2, NUMERICAL ALGORITHMS FOR
PROPAGATING FRONTS

2.1. Entropy Conditions and Curvature

The fundamental aspects of front propagation in our
context can be illustrated as follows. Let y(0) be a smooth,
closed initial curve in R?, and let y(f) be the one-parameter
family of curves generated by moving (0} along its normal
vector fieid with speed (K ). Here, F(K) is a given scalar
function of the curvature K. Thus, n-x, = F(K}, where x
is the position vector of the curve, f is time, and » is the
unit normal to the curve.

Consider a speed function of the form 1 — sK, where £
is a constant. An evolution equation for the curvature K
(see [34]) is given by

K, =K, +sK*— K?, (1)
where we have taken the second derivative of the curvature
K with respect to arclength «. This is a reaction-diffusion
equation; the drive toward singuolarities due to the reaction
term (eK”® — K?) is balanced by the smoothing effect of
the diffusion term (2K, ). Indeed, with £ = 0, we have a
pure reaction equation K, = — K2, In this case, the solution
is K(s, 1) = K(s, 0)/(1 + tK(s, 0)), which is singular in
finite ¢ if the initial curvature is anywhere negative. Thus,
corners can form in the moving curve when & = 0.

As an example, consider the periodic initial cosine curve

v(0) = (—s5,[1 + cos 2ms)/2) (2)
propagating with speed F(K) = 1 — £K, & > 0. As the
front moves, the troughs at s = n + §, n = 0, =1, £2, ...
are sharpened by the negative reaction term (because
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FI1G. 1. Propagating cosine curve.

K < 0 at such points) and smoothed by the positive diffu-
sion term (see Fig. 1a). For ¢ > 0, it can be shown (see
(34. 26]) that the moving front stays C™.

On the other hand, for ¢ = 0, the front develops a sharp
corner in finite time as discussed above. In general, it is
not clear how to construct the normal at the corner and
continue the evolution, since the derivative is not defined.
One possibility is the “swallowtail” solution formed by
letting the front pass through itseif (see Fig. 1b). However,
from a geometrical argument it seems clear that the front
at time ¢ should consist of only the set of all points located
a distance ¢ from the initial curve. (This is known as the
Huygens principle construction, see [34]). Roughly speak-
ing, we want to remove the “tail” from the “‘swallowtail.”
In Fig. 1c, we show this alterpate weak solution. Another
way to characterize this weak solution is through the fol-
lowing ‘“‘entropy condition” posed by Sethian (see [34]):
if the front is viewed as a burning flame, then once a
particle is burnt it stays burnt. Careful adherence to this
stipulation produces the Huygens principle construction,
Furthermore, this physically reasonable weak solution is
the formal limit of the smooth solutions as the curvature
term vanishes (see [34]).

As forther illustration, we consider the case of a V-

Shock

shaped front propagating normal to itself with unit speed
(F = 1). In [33], the link between this motion and hyper-
bolic conservation laws is explained. In Fig. 2a, the point
of the front is downwards; as it moves inwards with unit
speed, a shock develops as the front pinches off and an
entropy condition is required to select the correct solution
and produce the limit of the viscous case. Conversely, in
Fig. 2b, the point of the front is upwards; in this case,
the unit normal speed results in a rarefaction fan which
connects the left state with slope +1 to the right state
which has slope —1, Extensive discussion of the role of
shocks and rarefactions in propagating fronts may be found
in [33].

The key to constructing numerical schemes which adhere
to this entropy condition and rarefaction structure comes
from the link between propagating fronts and hyperbolic
conservation laws. Consider the initial front given by the
graph of f(x), with f periodic on [0, 1], and suppose that
the propagating front remains a function for all time. Let
¢ be the height of the propagating function at time ¢, thus
¢(x, 0) = f(x). The tangent at (x, ¢} is (1, ¢,), and the
equation of motion becomes ¢, = F(K) (1 + ¢2)12. Using
the speed function F(K) = 1 — K and the formula K =
—$ul(1 + $3)72, we get

b

Rarefaction Fan

FIG. 2. Front propagating with unit normal speed.
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Differentiating both sides of this equation yields an evolu-
tion equation for the slope 1 = dé/dx of the propagating
front, namely

Ut [—(l + uz)”Z]x =& [1 _l:xuz:lx- (4)

Thus, the derivative of the Hamilton—Jacobi equation with
parabolic right-hand side for the changing height ¢ is a
viscous hyperbolic conservation law for the propagating
slope u (see [37]). Our entropy condition is in fact equiva-
lent to the one for propagating shocks in hyperbolic conser-
vation laws. Thus, we exploit the numerical technology
from hyperbolic conservation laws to build consistent, up-
wind schemes which select the correct entropy condition.
For details, see [26, 36].

Our goal then is to use the above equations to develop
numerical techniques for propagating fronts. Before doing
so, we must extend the above ideas to include propagating
fronts which are not easily written as functions. This is the
level set idea introduced by Osher and Sethian [26].

2.2, Level Set Methods

Given a moving closed hypersurface I'(¢), that is, I'(; =
0):[0, =) — R¥, we wish to produce an Eulerian formula-
tion for the motion of the hypersurface propagating along
its normal direction with speed F, where £ can be a function
of various arguments, including the curvature, normal di-
rection, etc. The main idea is to embed this propagating
interface as the zero level set of a higher dimensional
function ¢. Let ¢{x, t = 0), where x € R, be defined by

$(x,1=0) = *d, (5)

where d is the distance from x to I'(t = 0}, and the plus
(minus) sign is chosen if the point x is outside (inside)
the initial hypersurface I'(t = 0). Thus, we have an initial
function ¢(x, t = 0): RY — R with the property that

Tt =0) = (x|¢(x,t = 0) = 0). (6)
Our goal is to now produce an equation for the evolving
function ¢{x, {) which contains the embedded motion of
I'(r) as the level set ¢ = 0. Let (x(1), t)} be the path of a
point on the propagating front. That is, x(t = Q) is a point
on the initial front I'(t = 0), and a,'n = F(x(f)). Since
the evolving function ¢ is always zero on the propagating
hypersurface, we must have
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P(x(1),6) = 0. N

By the chain rule,

G+ Vo(x(t,0) x'(1) = 0. 8

Since n = F where n = V¢/ | V|, we then have the evolu-
tion equation for ¢, namely

¢+ Flvfﬂ =0
d(x,t = 0} given.

(9)
(10)

This is suggestive of a Hamilton—-Jacobi equation because,
for certain forms of the speed function F, we obtain the
standard Hamilton-Jacobi equation.

In Fig. 3 (taken from [35]), we show the outward propa-
gation of an initial curve and the accompanying motion of
the level set function ¢. In Fig. 3a, we show the initial
circle, and in Fig. 3c we show the circie at a fater time. In
Fig. 3b, we show the initial position of the level set function
¢, and in Fig. 3d, we show this function at a later time.

There are four major advantages to this Eulerian Hamil-
ton—Jacobi formulation. The first is that the evolving func-
tion ¢(x, ¢} always remains a function as long as Fis smaooth,
However, the level surface ¢ = 0 and, hence, the propagat-
ing hypersurface T'(#), may change topology, break, merge,
and form sharp corners as the function ¢ evolves (see [26]).

The second major advantage of this Eulerian formula-
tion concerns numerical approximation. Because ¢{x, 1)
remains a function as it evolves, we may use a discrete
grid in the domain of x and substitute finite difference
approximations for the spatial and temporal derivatives.
In fact, a key aspect to the level set approach is to exploit
the technology of hyperbolic conservation laws to construct
the correct entropy-satisfying solution.

»

Propagating circle.

FIG. 3.



352

?

3

F=1-0.025K F=1-02K

FIG. 4. Propagating triple sine curve: (a) F = 1. — 0.025 K; (b) F =
i. - 025K

The third major advantage of the above formulation is
that intrinsic geomeiric properties of the froni may be
easily determined from the leveli set function ¢. For exam-
ple, at any point of the front, the normal vector is given by

- Vo
Vel

n

(11)

and the curvature is easily obtained from the divergence
of the gradient of the unit normal vector to front, i.e.,

V¢ _ ¢',rx 95% - 2¢x¢y¢xy + d’yy ¢'§

K=%. =
V| (7 + 337

(12)

Finally, the fourth major advantage of the above level
set approach is that there are no significant changes re-
quired to follow fronts in three space dimensions, By sim-
ply extending the array structures and gradient operators,
propagating surfaces are easily handled.

As an example of the application of level set methods,
consider once again the problem of a front propagating
with speed F(K) = 1 — =K. In Fig. 4, we show two cases
of a propagating initial tripie sine curve. For £ small (Fig.
4a), the troughs sharpen up and will result in transverse
lines that come too close together, For ¢ large (Fig. 4b),
parts of the boundary with high values of positive curvature
can initially move downwards, and concave parts of the
front can move quickly upwards.

Since its introduction in [26], the above level set ap-
proach bas been used in a wide collection of problems
involving moving interfaces. Some of these applications
include the generation of minimal surfaces [8], singularities
and geodesics in moving curves and surfaces [9], fame
propagation |29, 44], fluid interfaces [5, 6, 25], and shape
reconstruction [22]. Extensions of the basic technique in-
clude fast methods [1], grid generation [35], and algorithms
for multiple materials [32]. The fundamental Eulerian
perspective presented by this approach has since been
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adopted in theoretical analysis of mean curvature flow;
see, in particular, [11, 7] and related work in [4, 10,
12-14, 17].

3. EQUATIONS OF MOTION FOR DEPOSITION,
ETCHING, AND LITHOGRAPRHRY

We now build the speed function F for deposition, etch-
ing, and lithography for the ievel set equation of motion

$.+ FIVp| =0
¢(x, £ = 0) given.

(13)
(14)

Note that F is the speed in the normal direction. Our
approach i3 to write the normal speed function as the
superposition of the three main physical effects:

F= FDeposiLion + FEtching + FLithngraphy' (15)

All effects do not take place at once; however, the design
of the numerical algorithm aliows vartous combinations of
terms to be “turned on” during the surface profile ad-
vancement.

The underlying physical effects involved in etching, de-
position, and lithography are quite complex; much of the
following summary is obtained from the excellent over-
views in {30, 31,41, 42, 23, 28]. The effects may be summa-
1ized briefly as follows:

« Deposition. Particles are depostted on the surface,
which causes buildup in the profile, The particles may
cither isotropically condense from the surroundings
(known as chemical or “wet’” deposition) or be deposited
from a source. The main advantage of this latter technology
is increased control over the directionality of surface depo-
sition. The rate of deposition and, hence, growth of the
layer may depend on source masking, visibility effects be-
tween the source and surface point, angle-dependent flux
distribution of source particles, the angle of incidence of
the particles relative to the surface normal direction, re-
flection of source particles, and surface diffusion effects.

» Erching. Particles remove material from the evolving
profile boundary. The material may be isotropically re-
moved, known again as chemical or “wet” etching, or
chipped away through reactive ion etching, also known as
“jon milling.” Similar to deposition, the main advantage
of reactive ion etching is enhanced directionality, which
becomes increasingly important as device sizes decrease
substantially and etching must proceed in vertical direc-
tions without affecting adjacent features. As described in
(40], the total etch rate consists of an ion-assisted rate
and a purely chemical etch rate due to etching by neutral
radicals, which may still have a directional component. As
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FIG. 5. Variables and setup.

in the above, the total etch rate due to wet and directional
milling effects can depend on source masking, visibility
effects between the source and surface point, angle-depen-
dent flux distribution of source particles, the angle of inci-
dence of the particles relative to the surface normal direc-
tion, reflection/re-emission of etchmg/mlllmg particles,
and surface diffusion effects.

* Lithography. The underlying material is treated by an
electromagnetic wave which alters the resist property of
the material. The aerial image is found, which then deter-
mines the amount of crosslinking at each point in the mate-
rial giving the etch/resist rate at each point of the material.
A profile is then etched into the material, where the speed
of the profile in the normal direction at any point is given
by the underlying etch rate. The key factors that determine
the evolving shape are the etch/resist profile and mask-
ing effects.

In the rest of this section, we formalize the above.

3.1, Initial Position and Setup

Define the coordinate system with the x and y axis Iying
in the plane and z being the vertical axis. We consider a
periodic initial profile k(x, v), where A gives the height of
the initial surface above the xy plane. We also consider a
source Z given as a surface above the initial profile and
write Z(x, y) referring to the height of the source at the
point (x, y).

For both etching and deposition, define a source ray as
leaving the source and aimed towards the surface profile.
Let ¢rbe the angle between the source ray and the negative
z axis; ¢rruns from 0 to m, though it is physically unreason-
able to have 4 values between #/2 and #. Let vy be the

angle between the projection of the source ray in the xy
plane and the positive x axis. Let n be the normal vector
at a point x on the surface profile, and & be the angle
between the normal and the source ray.

In Fig. 5, we indicate these variables. Masks, which force
flux rates to be zero, are indicated by heavy dark patches
on the initial prefile. At each point of the profile we assign
a visibility indicator function My(x, x') which indicates
whether the point x on the initial profile can be seen by
the source point x’.

Qur goal is to write the effects of deposition, etching,
and lithography on the speed F at a point x on the front.

3.2. Deposition
We consider three separate types ol deposition:

o FD.: Isotropic deposition. Uniform deposition.

s FB.i: Unidirecton deposition. Deposition in a particular
direction, based on the angle of the incoming stream.

* FB..: Source deposition. Deposition radiating from a
point source, including sputter deposition and angle-based
flux functions.

In Fig. 5, we generalize the latter two efiects as the
“source.” Thus, the source as shown in the figure may
consist of locations which emit either unidirectional depo-
sition or point source deposition.

The above terms may be assembled as

= FDeposiiion (Fgoe FUI'.IH FSou ’ (16)

F Deposition

that is, the deposition speed may depend on isotropic,
unidirectional, or source deposition.



L
|

354

Let My(x,x") be one if the point X’ on the source is
visible from the point x on the profile, and zero otherwise.
Let r be the distance from x to x’, and, finally, let o be
the unit vector at the pont x’ on the source pointing towards
the point x on the profile. Then we may refine the
above terms.

3.2.1. Isotropic Deposition
FRo = RR, Fluxf, . (7

Here, RE, is the rate of growth and FluxZ,(x) is the iso-
tropic flux function,

3.2.2. Unidirectional Deposition

FBni = _Rgni(x)MY(xs xr)Flux8ni(rs tt”! Ys 9’ X)(n ) a)' (18)
Here, Rf,; is the rate of growth, and Filux8,(r, «, v, 6, x)
is the unidirectional flux function, which may depend on
the distance r, the emission angles ¢ and vy, the angle of

incidence #, and the starting point x.

3.2.3. Source Deposition

Fluw= =RE() [ Flux@u(r, by, 8,%)

X My(x,x")(n - a) do.

19)

Here, the integral is over the entire source, RE, is the rate
of growth, and FluxZ, (r, ¥, v, 8, x) is the flux function. A
typical flux function might include the effects of sputter
deposition and be of the form cos"{A ), where » is a con-
stant and | = 27A.

3.3. Etching

In this formulation, the equations of etching are quite
similar; we include them for the sake of completeness. We
consider three separate types of etching:

» FE,: Isotropic etching. Uniform etching. This may be
a function of the underlying material.

* FEit Unidirection etching. Etching in a particular direc-
tion, based on the angle of the incoming stream.

* FE,.: Source deposition. Etching radiating from a point
source, including ion-milling and transport of neutral rad-
icals.

The above terms may assembled as
FEtching = FEtching(FiEsos F{slnia Fgou 3 (20)

where again we may refine the above terms.
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3.3.1. Isotropic Etching
Ffo = —RE Fiuxf,. (21)

Here, Rf, is the etch rate based on the isotropic flux func-

tion Fluxf,(x).

3.3.2. Unidirectional Etching
ani = Rgni(x)M\’(x’ xr)FIuXEHi(rs dj! 7! 99 X)(n ) CI!'). (22)

Here, RE is the etch rate, and FluxE(r, ¢, v, 8, x) is the
unidirectional flux function, which may depend on the dis-
tance r from x te the source, the emission angles ¢ and v,
the angie of incidence #, and the starting point x.

3.3.3. Source Etching

Fow = REu(X) [, Fluxk(r, b7, 6,%)

X My(x,x")(n - a) do.

(23)

Here, the integral is over the entire source. RE,, is the rate
of growth, and Flux€ (7, , v, 6, x) is the flux function.

3.4. Lithography

The construction of the speed function for lithographic
cases is straightforward if one assumes that the etch rate
is given. Typically, an aerial image is found using a simula-
tor such as SPLAT [43], which, together with a program
such as BLEACH [43], provides the etch rate at each point
of the material. Since the etch rate is provided everywhere
in the material, we may simply write
(24)

FLithography = _RLithDs
where the etch rate Ry, 18 supplied by the simulator.

3.5. Other Effects

In etching and deposition, additional effects can play an
important role in the evolving profile. These include:

* Surface migration. Particles can migrate when they
collide with the interface. This causes a diffusion-like term
which tends to diffuse large peaks of velocities. Given the
above speed function F for surface motion, one can think
of two ways to include the effects of surface diffusion/
migration. One is to simply modify the speed function by
the term 1 — K, where K is the local curvature, which
has the effect of diffusing the front. The second way is to
obtain a more accurate representation of the diffusion term
as follows. Given a surface x(s) in R?, we imagine that a
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scalar function g is defined on that surface, and solve the
diffusion equation g, = £V?g along the surface.

* Re-emission/reflection. Some of incoming flux/neutral
radicals may not stick to the surface, but instead be
reflected/re-emitted. The fraction of particles that are not
reflected/re-emitted is known as the *‘sticking probability”
and varies between 0 and 1. Thus, a sticking probability
of unity corresponds to the case under study above. For
sticking probabilities less than unity and depending on the
surface physics, the re-emission can be either specular or
diffusive. Thus, each point on the evolving profile may act
as additional source when viewed from other visible sites
on the front. This can be set up as an integral equation
for the total source flux at a point, depending on the seen
visible angle and probability flux re-emission distribution.
For details, see the derivation in [40] and the calculations in
[24]. This integral is discretized by a dense, non-symmetric
. matrix which must be sclved at each time step in order to
calculate the correct flux to advance the front. In two
dimensions this is tractable; in three dimensions, the prob-
lem is daunting and requires significant resources, Exten-
sions of the level set approach to problems including re-
flection, reemission, and surface diffusion are the focus of
Part III of this paper [3].

4. FUNDAMENTAL IDEAS OF IMPLEMENTATION

We briefly discuss the application of the level set ap-
proach to this problem. Complete details may be found in
Part I 2] of this sequence.

Rather than employ the full level set approach, we use
a narrow band version which focusses computational labor
on cells which bracket the zero-level set corresponding to
the front. This approach was introduced in [8], used in
recovering images in [22], and analyzed extensively in [1].
There are two reasons to do so. The first is speed; in
three dimensions, the operation count for the full level set
method is O(N?), where N is the number of cells in each
direction. By limiting calculations to a narrow band of
width k& around the zero-level set, the operation count
drops to O(kN?), which is a substantial savings. Typically
we use bandwidths of six cells in each direction, and the
corresponding speedup is an order of magnitude over the
full level-set approach.

The second reason to employ the narrow band construc-
tion is because certain propetties of the front which con-
tribute to determining its motion have no natural meaning
on other level sets. For example, the visibility of the front
has meaning for the zero-level set, but not for others. Such
vartiables, known as extension variables, are best treated
by the following approach: for any given level set, the value
of the extension variable is found by using the value on
the closest point of the zero level set. For details, see {1, 21.

Local variables, such as normal veciors and curvature
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have meaning for all the level sets and may be easily calcu-
lated using those values. Normals are calculated using the
average one-sided difference technique, Variations in etch
rate, either through masks, material dependence, or litho-
graphic etch rates are directly incorporated intoc the
speed function.

The front is updated using second order in space schemes
specially designed for the level-set function; see [2]. There
are two separate schemes; first, an ENO-based scheme for
convex speed functions F which most naturally occur in
lithography simulations and some source deposition prob-
lems, and a non-convex Lax—Friedrichs/ENQ scheme (see
[27]) which can be required for sputter etch/deposition
problems, In three space dimensions, the schemes are
given by:

1. First-order space convex.

e+l
itk T

% — Affmax(Fy;, 0)V* + min(F;, 0)V1, (25)

where

V* = [max(Dy,

0)* + min(D;;, 0)°

+ max(Djz, 0)* + min(D;}, 0)*

+ max(D,;, 07 + min{D}3, 0)*]"*
V™ = [max(D, 0y + min(D g, 0)*

+ max(Dy;, 0)* + min(D}, 0y

+ max(DE, 0 + min(D}, 0)3]'"

(26)

@7

1

2. Second-order space convex. The same as the above,
however, where this time V* and V™ are given by

V* = [max(4, 0)* + min{B, 0)*
+ max(C, 0)* + min{D, 0)?

+ max(E, 0)* + min(F, 0*}'? (28)
V= [max(B, 0)2 + min(A, 0)2
+ max(D, 0¥ + min(C, 0)?
+ max(F, 0)° + min(£, 0Y°]"2, (29)
where
—x Ax -X-x X=X
A= D:‘jk + —i_ m(fok ’ D:;k ) (30)
e Ax XY X=X
A e -
ot S m(D7, D) (32)

C=D}+
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Initigl Midway Final

FIG. 6. Ysotropic deposition into hole.

Initial Final Final — Rotated

FIG. 7. Directional deposition into hole.

Initial Midway Final

FIG. 8. Source deposition into hole.

Inttial Final

FIG. 9. Isetropic etching into hole.
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Inétial

Midway

Final

FIG. 10. Directional etching into hole.

D =Dt~ 2wy, D) (33)
_ AZ —z-7 py+r-z
E = Dijk (D.Uk ¥ Dqk ) (34)
F=Dji~ Stm(Di, D) (35)
and the switch function is given by
x i fx] =1y
mix,y)=qy il >1y] (36)
0 xy<0

3. First-order space non-convex.

DX+ D™ DY+ D+y D74 ptf
& = - Ar[h’( )

2 ’ 2 ’ 2

(Dt)k .uk) aU(DUk Uk) (37)

aW(Dqk - D;i)]’

Initial

FIG, 11.

Midway

where M, (M,, M,,) is a bound on the partial derivative
of the Hamiltonian with respect to the first (second, third)
argument, and the non-convex Hamiltonian is a user- -
defined input function.

4. Second-order space non-convex.

o A+B C+D E+F
ichIz ijk*‘At[H( 5 T 5 g ) (38)
;M(B A)——M(D )

—%MW(F— E)], (39)

where A, B, C, D, E, and F are defined as above.

5. Time integration. The above is for first-order explicit
schemes. The most natural way to make a second order
in time version is through a predictor/corrector method,
¢.g., Heun’s method. This requires embedding the entire
sequence of one time step advancement in a two-step loop.
More precisely, proceed as follows:

(a) Let ¢,(j‘k”)* be the solution obtained by updating
the solution ¢, one time step.

Final

Source etching into hole.
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FIG. 12, Lithographic Development.

(b) Let ¢{3** be the solution obtained by updating
the solution @' * one time step.
(c) Then let

T = b +05[GEDT — bl {40)
5, NUMERICAL TESTS OF METHOD

In this section, we perform some tests to demonstrate
the power of this approach.

5.1. Depeosition
5.1.1. Isotropic Deposition

We begin by studying isotropic deposition. This is fairly
straightfoward application of. the level-set approach. In
Fig. 6 we show a square hole upon which a material is
being isotropically deposited; this corresponds to a simple

!
a0
0,
e W) 0
1T
)
sy
e Vg

P e|
1
o Wy |
) 1 ~0
0T
g
e — 4
ey
s ey
T
D 1,
s g g g
et Vg | 0

FIG. 13. Layering of discontinuous etch coefficients.

FIG. 4. Etching profile through multiblocks.
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FIG. 15. Isotropic etching of bridge.

Initial Midway Final

FIG. 16. Unidirectional etching of bridge.

Midwey Final

Instial

FIG. 17, Source etching of bridge.
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X — Cross — Section

X — Crosg — Section

L

X — Cross — Sectign

L

Z — Cross — Section

Z — Cross — Section

o

£ — Cross — Section

&

|

Diag — C'roas — Section

Fle) =1

Diag — Gross — Seclion

F = cos(8)

Diag — Croses — Seclion

F = [1+ 44in*(8)] cos(8)

FIG. 18. Three dimensions: Effects of different yield functions.

speed function of F = 1. The hole closes off as the deposi-
tion material fills in the cavity,

5.1.2. Directional Deposition

We next study isotropic deposition. We consider direc-
tional deposition from a plane located above a square hole,
where the effects of visibility and shading are included. In
Fig. 7, we show two three-dimensional plots which show
the evolving profile. The slant of the profile in the direction
of the directional deposition source is clearly seen; note
in particular the shearing below the surface in the ro-
tated figure. '

5.1.3. Source Depasition

Finally, we study source deposition. We consider source
deposition from a plane located above the hole. Again,
the effects of visibility and shading are included. Along
the entire plate, deposition material is emitted uniformly
in each direction. In Fig. 8, we show two three-dimensional
time plots of the evolving profile. The trench begins to
pinch off due to the effects of visibility, and a bulb-shaped
profile evolves.

5.2. Etching

We now repeat the above experiments under the effects
of various types of etching.

FIG. 19. Rectangular peg and hole under sputter etch.
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FIG. 22. Upward saddle under sputter etch.

FIG. 23. Upward saddle under sputter etch.
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FIG. 24. Downward saddle under sputter etch.

which show the evolving profile. The fact that visibility is
included keeps the walls of the profile fairly steep, in con-
trast with the isotropic case shown earlier.

5.3. Lithography

Nezxt, we perform a lithographic etch, in which the rate
function is obtained from other numerical simulations; see
[43]. We use a second-order method with a grid size of 50 X
50 % 47. In Fig, 12, results of the evolving profile are shown.

6. SOME MODEL PROBLEMS

in this section, we perform a series of additional experi-
ments to demonstirate the versatility of the level set ap-
proach.

6.1. Etching under Discontinuous Etch Coefficients

First, we show what happens when an etching front prop-
agates info a material with discontinuous etch coefficients.
These discontinuous coefficients caunse sharp edges and
corniers in the etch profile. We imagine a multilayered
material, with etch coefficients of either zero or one. The
etch distribution is given in Fig. 13, while the evolution of
the planar profile down through this material structure is
given in Fig. 14. The side walls of the first sub-layer are
removed in the final figure to show the hidden down-
ward cavities.

6.2. Development of Topological Changes in Profiles:
Etching and Deposition

Next, we consider initial profiles which lend themselves
to topological changes as they evolve.

We begin by studying isotropic etching of a bridge. The
bridge initial has a thin curtain stretched underneath it;
the thickness of the curtain is smallest at the middle (see
Fig. 15a). In Fig. 15, we show the evolution of this bridge
under isotropic etching. The results show first the disinte-
gration of the curtain at its center, followed by the nar-
rowing of the top and the final image of two independent
pillars being etched away.

Next, in Fig. 16, we show the same structure under unidi-
rectional etching. Here, the pillars shadow the profile, and
their effect can be seen on the flat part of the surface. The
bridge is again etched away.

Finally, in Fig. 17, we consider the evolution of the above
bridge structure under source etching. We compare this
case with the isotropic case; because the etching stream is
coming almost uniformly from the source plate, the main
difference lies in the shadowing effects below the bridge.

6.3. Sputter Etching/Deposition

As discussed extensively in Part 1, in some sputter prob-
lems (for example, ion milling}, the normal speed of the
profile depends on the angle of incidence between the
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excavated shapes containing sharp corners and saddle
points. We start with an upward saddie surface under the
sputter etch function

F =1+ Asin*(0)] cos(6). (4D
In Figs. 21, 22, and 23, we study the effects under A = 0
and A = 4.

Finally, we study the same etching laws applied to an
indented saddle surface, as shown in Figs. 24 and 25.

7. SUMMARY

The numerical method presented in this paper can be
used for a wide variety of three-dimensional simulations in
etching, deposition, and lithography; the method naturally
takes into account such effects as incident angles, masks,
vield functions, visibility, and apisotropy on the surface
motion. Due to the use of conservative upwind schemes,
the method selects the correct entropy condition and main-
tains sharp corners where shocks in the tangent occur;
conversely, the correct rarefaction fan solution is built at
outward-facing corners. The method is second-order accu-
rate in space and time in the motion of the front. By using
the narrow band approach, the method is of the same
computational work as cell and marker particle methods;
that is, the work is a constant times the number of points
which characterize the evolving front. In Part 111 [3], we
present the extension of this work to include effects of
reflection, re-emission, and surface diffusion. Finally, in
[38] we present an extremely fast marching level set
method based on control theory and sorting, and applicable
to lithography development and some problems in etching
and deposition.
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